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Elevated temperature X-ray measurement of 
residual stresses in a fibre reinforced AI alloy 
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University, S-581 83 LinkOping, Sweden 

Thermal residual stresses have been measured using X-ray diffraction in an AI-2% Mg 
matrix with 10, 20 or 26 vol % AI203 short fibres. Stress measurements were made at room 
temperature as well as in situ at elevated temperatures up to 250 ~ The thermal stresses 
arise due to the difference in coefficient of thermal expansion (CTE) between the matrix and 
the reinforcement. The largest CTE is found in the matrix, resulting in tensile residual 
stresses after a temperature drop, e.g. after processing or annealing. A high fraction of 
reinforcement implies higher matrix stresses than a low fibre content. The stresses decrease 
with increasing temperature for all fibre volume fractions. Measurements are compared with 
calculations using a modified Eshelby model for equivalent inclusions. Parameters taken 
into account in the model are coefficient of thermal expansion, Young's modulus, and 
volume fraction and geometric shape of the reinforcing phase. A good correlation between 
calculations and experimental results has been found, bearing in mind that no plasticity is 
taken into account in the Eshelby model. The plastic behaviour of the composites has been 
described using a model based on a rigid spherical cavity in an elastic-plastic matrix. 

1. Introduction 
In aluminium alloys, several advantages may be 
gained by the introduction of ceramic reinforcement, 
e.g. increased resistance to erosion and wear, im- 
proved strength and better dimensional stability un- 
der temperature variations. The maximum service 
temperature may be increased with retained mechani- 
cal properties. Hence, these composites are strong 
candidates in applications where increased service 
temperature would be desirable, but where the hither- 
to used alloys do not meet the new requirements. 

Due to the difference in coefficients of thermal ex- 
pansion (CTE) between the matrix and the reinforcing 
phase of a metal matrix composite, large thermal 
misfit strains (and stresses) arise in the material during 
cooling from process temperature. The magnitude of 
the stresses depends on the matrix-reinforcement sys- 
tem and on the thermal history of the composite. 
These stresses may be detrimental to the mechanical 
properties of the composite, especially since the largest 
CTE of the phases is found in the matrix, giving rise to 
tensile residual stresses in the matrix. Typically, the 
matrix CTE is some four to seven times that of the 
reinforcement. 

Numerous investigations of residual stresses in 
a wide variety of matrix-reinforcement systems have 
been made using X-ray or neutron diffraction. Practi- 
cally all of these measurements have been made at 
room temperature. Since many metal matrix corn- 
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posites (MMCs) are potential elevated temperature 
materials, the need for residual stress determination at 
higher temperatures is obvious. In order to meet this 
demand, a device has been built by which in situ X-ray 
diffraction measurements of residual stresses at elev- 
ated temperatures can be conducted [1]. Measure- 
ments using this device have been made at four differ- 
ent temperatures between 25 and 250 ~ The aim of 
the work has been to study the formation and relax- 
ation of residual stresses due to temperature changes 
and to describe the composite's behaviour using an 
elastic model, namely the modified Eshelby model for 
equivalent inclusions, as well as an elastic-plastic 
model where yielding of the matrix is taken into con- 
sideration. 

2. Theory 
2.1. M a c r o -  a n d  m i c r o s t r e s s e s  
Residual stresses can be divided into macrostresses 
and microstresses [2]. Macrostresses can be a result of 
mechanical deformation that causes plastic deforma- 
tion in the surface layers of the material, such as 
shot-peening, grinding, machining, etc. Since the sur- 
face layers will also constrain the bulk in return, the 
bulk material will also have residual stresses even 
though it may not have suffered deformation. Thermal 
macro-stresses may be induced in a material during 
cooling from a process temperature or by various heat 
treatments. Different yield points in the different 
phases of a multiphase material cause an in- 
homogeneous partitioning of plastic strain between 
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the phases, causing a residual microstress state to form 
due to the constraining effect of the stronger phase on 
the weaker. 

For  any residual stress, aij in a two-phase material, 
it holds [2] 

fDChjdD=fDmChjdDm+fDfChjdDf=O (1) 

where Dm and Df a r e  the respective volumes of the two 
phases, the matrix and the fibres of a composite for 
instance, and D is the total volume of the body. If 
<aij)m and <6q) f  denote the average stresses in the 
two phases, and Vm and /)f are the volume fractions, 
Equation 1 can be written 

/)m<(Ylj>m "4- /)f<O'ij>f : 0 (2) 

These average microstresses can be determined experi- 
mentally by X-ray diffraction. The average is to be 
taken over a volume containing a statistically repre- 
sentative number of grains, and it is constant in 
a given phase as long as a representative volume is 
measured. 

In polycrystalline materials, a large number of 
grains contribute to the information obtained by 
X-ray diffraction. Hence, the measured strains are 
average values. In order to determine the average 
stress from these strain values, average elastic con- 
stants are required. However, since the only diffracting 
grains are those whose normal bisect the incident and 
diffracting beams, the averaging is only over a particu- 
lar set of grains, all of which have a specific form of 
lattice directions (hk l )  in a particular orientation. 
Thus, an added constraint is required for the theore- 
tical calculation of average stresses from the single 
crystal elastic constants, and the values v/E and 
(1 +'v)/E are no longer satisfactory [2]. Hence, the 
X-ray elastic constants, S*, and 1/2S* must be derived 
[3], e.g. assuming constant stress in all grains in ac- 
cordance with the Reuss model. 

2.2. The modified Eshelby model 
Originally, this theory was presented in the late 1950s 
and early 1960s by Eshelby [4-6].  It has since then 
been successfully applied by numerous researchers to 
dispersion strengthened systems, as well as continuous 
fibre and short fibre reinforced composites, see [7-13]. 

An excellent description of a series of "cutting and 
welding exercises" illustrating the Eshelby method to 
calculate the stresses in a matrix with misfitting inclu- 
sions has been given by Withers et al. [11]. An inclu- 
sion with the same elastic constants as the matrix is cut 
from the unstressed material, and imagined to under- 
go a stress-free shape change by the transformation 
strain, e T. To facilitate refitting of the inclusion into 
the position from which it was cut, surface tractions 
are applied. Back in its place, the surface tractions are 
removed, and equilibrium is reached at a constrained 
strain, e c, of the inclusion relative to its initial shape. 

For  an ellipsoidal inhomogeneity, e.g. a fibre or 
whisker, embedded in an elastically homogeneous 
matrix and with elastic constants, CI, different from 

those of the matrix, a procedure similar to the above 
gives the valid equations. The stress-free strain mis- 
match can be considered as a transformation strain, 
e TM, of the inhomogeneity. Again, on replacing the 
inclusion in its hole, it takes up the constrained shape, 
e c. A second inclusion of the same eIastic constants as 
the matrix can be imagined to undergo a stress-free 
transformation strain, e T, so that when surface trac- 
tions are removed and equilibrium is reached, it will 
have the same uniform stress state. The inhomogene- 
ity with elastic constants, CI, and the equivalent inclu- 
sion with elastic constants, CM, can be interchanged 
without disturbing the matrix, since they, despite dif- 
ferent strain states, have identical stress states. 

For  a material with a finite concentration of inclu- 
sions, all aligned in the same direction, one may, follow- 
ing Withers et al. [11], arrive at an expression for the 
mean matrix stress ( a ) n  in the case of no externally 
applied stress 

<(Y>M = I)I CICM (S - I){(CM -- Cl) 

x [S - vl (S -- I)] -- CM } - leT* (3) 

where vt is the volume fraction of inclusions, CI and CM 
are the stiffnesses of the inclusion and matrix, respec- 
tively, S is the dimensionless Eshelby tensor, I the 
identity tensor, and e T* the transformation strain. The 
Eshelby tensor, S, is only dependent on the geometry, 
i.e. aspect ratio of the inclusion and the Poisson's ratio 
of the matrix. For  the case of thermal stresses e TM is 
given in terms of the difference A0t = aM - 0q in coef- 
ficient of thermal expansion between the matrix and 
the inclusion multiplied by the appropriate temper- 
ature change, AT, [11], i.e. 

e T* = (0tM -- al)AT (4) 

Explicit expressions for the components of the stiffness 
and Eshelby tensors for a number of geometries can be 
found in Mura [14] and in Taya and Arsenault [15]. If 
the inclusions are completely randomly distributed 
(rather than aligned) in the matrix, the tensor (S - I) 
in Equation 3 has to be replaced by an average 
Eshelby tensor ( S )  is given by Li [16]. 

One may note that Equation 3 can be written 
<~>M = A e T* where the tensor A is dependent only 
on the elastic constants of the phases, and the volume 
fraction and shape of the inclusion. It is also impor- 
tant to note that Equation 3 gives an approximation 
of the mean matrix stress in the case of a finite, i.e. real, 
composite. The reasons for concentrating on mean 
rather than local stresses are that it is the mean values 
that govern much of a composite's mechanical behav- 
iour [11], and that diffraction techniques with X-ray 
or neutron radiation reveal the mean values, i.e. aver- 
age microstresses (or strains), as discussed in Sec- 
tion 2.1. 

3. Experimental procedure 
3.1, Materials and heat treatment 
The metal matrix composite system investigated is 
based on the alloy A1-2% Mg as matrix material. 
Three volume fractions, vf = 10, 20 and 26 vol % (v/o), 
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of A1203 fibres were introduced by squeeze casting. 
The fibres are 8-A1203 short fibres of the Saffil type 
from ICI with average diameter 3 gm, randomly dis- 
tributed in a plane. To structurally stabilize the fibres 
and to obtain a fine-grained microstructure in the 
fibres about 4% SiO2 is incorporated. Silica is also 
used as binder in the preform, giving good handling 
strength and machinability [-! 7]. In an investigation of 
this composite system by Liu et al. [18], it has been 
shown that the silica binder reacts strongly with the 
liquid alloy during fabrication of the composite. The 
binder transforms to spinel (MgA1204) and the silicon 
dissolves in the matrix and reacts with Mg to form 
intermetallic Mg2Si precipitates. This can be seen in 
Fig. 1 where arrow A indicates the transformed binder 
and arrow B shows MgzSi. In [18] it is suggested that 
the Mg2Si precipitates influence the mechanical pro- 
perties, since remarkably high elongation values have 
been measured. 

The as-cast material was cut into approximately 
2 mm thick slabs for residual stress measurement. All 
samples were annealed in a small chamber furnace in 
air at 350 ~ for 15 min, followed by free cooling in air. 
After this treatment it is reasonable to assume that the 
macrostresses are zero, since the cooling rate has been 
low and the samples are small enough to ensure a 
homogeneous temperature distribution throughout 
the sample volume. 

To determine the stress free lattice spacing, do, pow- 
ders were made from material will all three different 
fibre volume fractions. The three materials were 
ground on 500 mesh SiC paper, giving ultrafinepow- 
ders. These powders were heat treated at 300 ~ in air 
for 30 min and air cooled, ensuring that any micro- 
stresses possibly arisen during grinding were fully 
relaxed. 

3.2. Stress measurement 
The residual stress measurements were performed us- 
ing a Jeol ~-goniometer with a position sensitive de- 
tector (PSD). The X-ray radiation used was CuK~, 

where the diffraction angle for the peak A1 (422) is 
20 = 137.45 ~ Seven t) angles between - 40 and 40 ~ 
were used, evenly distributed in sin 2 qt, combined with 
three �9 angles, 0 ~ 45 ~ and 90 ~ i.e. all in all 21 
measurement angles, in order to make three-dimen- 
sional analysis possible. For a definition of the above 
angles, see [2]. 

The diffraction peak positions were determined by 
least squares fitting of a pseudo Voigt function to the 
measured peaks [19]. The K~, and Ka2 peaks were 
both used in the fitting procedure, and the fitting 
parameter for the Ka, peak was taken as the peak 
position. The pseudo Voigt function is the sum of 
a Gaussian and a Lorentzian function, where the frac- 
tion of each function type is a parameter. In addition 
to peak position and intensity, it also has the peak 
width and angular separation between the K~, and Ka2 
peaks as parameters. The computer programs used for 
peak analysis and stress calculations have been de- 
veloped by Persson [20]. 

Measurements were confined to the matrix, since 
the reflections from the reinforcement phase were too 
weak to give any useful information. The penetration 
dep th  varies with the ~ angle between 70 gm for 

= _+ 40 ~ and 103 gm for ~ = 0 ~ on the 95% level. 
It has been shown, [21], that a three-dimensional 
stress state develops in this kind of material at a depth 
below the surface of the same order as the interfibre or 
interparticle spacing. Since the interfibre spacing of 
the investigated composites is, by far, smaller than the 
penetration depth, surface gradients, i.e, gradients in 
the direction of the surface normal, can be neglected 
[21]. 

To make elevated temperature measurements pos- 
sible, a special sample holder with a conduction heater 
was constructed [1]. The temperature was controlled 
with a Eurotherm controller, type 070. The thermo- 
couple monitoring the temperature was positioned 
between the heating conductor and the specimen. 
A second thermocouple attached to the sample surface 
and connected to a single channel recorder showed 
temperature variations within _ 2 ~ Residual stress 
measurements have been made at temperatures be- 
tween 25 and 250 ~ The diffraction angle 2e given 
above is the theoretical room temperature value for 
pure aluminium. The lattice spacing and hence the 
diffraction angle changes with temperature due to 
thermal expansions as well as stress variations, and 
the PSD centre position has to be adjusted accord- 
ingly. 

Figure 1 Microstructure of polished composite with 20 v/o fibres. 
Arrows A and B indicate transformed binder and Mg2Si, respec- 
tively. 
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3.3. Eshelby modelling 
The thermally induced residual stresses can be easily 
modelled following the Eshelby approach as described 
above. The parameters taken into account in the 
model are the elastic constants and coefficients of 
thermal expansion of the phases, and the volume frac- 
tion and shape, i.e. aspect ratio, of the inclusion. 
Relevant values of these parameters are given in 
Table I. 
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"Reference [22] for the alloy AA 5050. 
b Reference [23]. 
Reference [24]. 

4. R e s u l t s  a n d  d i s c u s s i o n  139- 
4.1. Unstressed lattice spacing 
It  is essential that the diffraction angle 20o, corres- 
ponding to the unstressed lattice spacing be accurately 
determined, since the stress values of the residual 
stress tensor are strongly and directly dependent on 
the shift, A20 = 20 - 20o, between the measured dif- 
fraction angle, 20, and the unstressed value, 20o. The 
value A20 is normally small, and hence even a small 
error in the determination of 20o will cause a large 
error in the stress results. 

The reaction between magnesium from the matrix 
and silicon from the silica in the fibres described in 
Section 3.1. and shown in Fig. 1 affects the 20 values 
and is clearly revealed by X-ray diffraction measure- 
ments; powders made from materials with different 
fibre volume fractions do not all have the same lattice 2oo 

spacing. The reason is that magnesium has a strong 
effect on the lattice parameter  of aluminium. Accord- 
ing to [25], each per cent of Mg added to A1 increases 160. 
the lattice parameter  by 0.0005 nm. Hence, the de- 
pletion of Mg from the matrix due to formation of 
spinel (MgAI204) and MgzSi precipitates is readily ~ 120' 
seen by a reduction in plane spacing, or rather by 
a shift to larger 20 values. Clearly, powder made from 
an unreinforced matrix alloy or from composites with 80. 
either fibre volume fraction is not sufficient to estab- 
lish a relevant stress-free reference. Consequently, all 
powders were measured at all measurement tempera- 4O 

tures at short intervals throughout the work. How- 0 
ever, no significant difference between the diffraction 
angles of the powders with 20 and 26 v/o fibres was 
found, which indicates that 20 v/o fibres contain 
enough Si to reduce the Mg content of the matrix to 
a minimum. 

The dependence of powder diffraction angle, 20o, 
on measurement temperature for the different fibre 
volume fractions is shown in Fig. 2. Such measure- 
ments on stress free powders also provide a check on 
the alignment of the goniometer. Any misalignment or 
sample displacement, etc., is immediately revealed by 
the 20o measurements. 

4.2.  R e s i d u a l  s t r e s s e s  
The measured residual stresses are in all cases, as 
expected, tensile in the matrix. Since the fibre are 
randomly distributed in a plane (referred to as the x - y  
plane) in the preforms, the stress directions cr~ and cry 
are geometrically identical and different from the cr= 
direction. However, when pressure is applied during 
casting the fibres are redistributed somewhat, and the 
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Figure 2 Diffraction angle, 200, and lattice spacing, do, as a func- 
tion of measurement temperature for stress-free powders with (�9 
10% and (Q) 20 and 26% fibre volume fraction. 
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Figure 3 Measured ( ) and predicted (---) residual stresses at 
25 ~ as a function of fibre volume fraction, vf, for samples cut (O) 
parallel (x-y) and (0) perpendicular (x-z) to the original fibre plane. 
Error bars indicate one standard deviation. 

deviation from a totally random distribution of fibres 
in the final composites is small. Hence, no significant 
difference in residual stress values between directions 
within a sample is found. From this and the fact that 
the average shear stresses are exceedingly small, it can 
be deduced that a hydrostatic state of stress is present. 
Hence, only the hydrostatic matrix stress, 
cr = (ox + cry + %)/3, is shown in the figures here 
and discussed in the following. The measured stress 
values at 25 ~ shown in Fig. 3 increase with increas- 
ing amounts of reinforcing phase in accordance with 
Eshelby calculations. Even though measured stress 
vatues within a sample are the same regardless of stress 
direction, i.e. crx = cry = % within errors, they may 
differ between samples as seen in Fig. 3. The dashed 
line in the figure is the prediction of the stress after 
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cooling from the annealing temperature (350 ~ to the 
measurement temperature using the Eshelby model 
for equivalent inclusions. 

Measurements at elevated temperatures also show 
that the stresses decrease as the temperature is in- 
creased. Results from measurements at four different 
temperatures between 25 and 250~ are shown in 
Fig. 4 for the three fibre volume fractions. As before, 
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Figure 4 Measured ( ) and predicted (---) stresses at different 
temperatures for samples cut (O, A, V3) parallel (x-y) and (0, A, I )  
perpendicular (x-z) to the original fibre plane with fibre volume 
fractions: (a) 10%, (b) 20%, and (e) 26%. Error bars indicate one 
standard deviation. 

calculated stresses are indicated by dashed lines. The 
calculations predict larger stresses for larger tempera- 
ture drops, i.e. at lower measurement temperatures. 
Measurements confirm this trend, and the ex- 
perimentally obtained stress values are in good con- 
formity with calculations. 

Comparing the predicted and measured stresses in 
Fig. 4 it is interesting to note that the difference be- 
tween calculated and. experimentally obtained values 
seems to increase ~vith increasing fibre volume frac- 
tion. This is more easily seen in Fig. 5, where the 
difference between calculated and measured stress is 
shown as function of fibre volume fraction. Except for 
the "misbehaving" 20 v/o composite at 175 ~ the gen- 
eral trend is clear; for low fibre volume fractions the 
difference ~s small or even negative, whereas larger 
positive values result at Vr = 26%. Since no plasticity 
is taken into account in the Eshelby model, these 
results indicate that the composite's b,laaviour during 
slow temperature changes is largely elastic for the two 
lower fibre volume fractions, while some plastic yield- 
ing has occurred in the 26 v/o case. In [11] it is 
suggested that local flow can occur, resulting in micro- 
plasticity, and from calculations by Persson and 
Ohlsson [26] it is clear that yielding occurs 'locally in 
stress intense areas, e.g. around fibre ends. 

The good bonding at the fibre-matrix interface [ 18] 
imposes mutual constraints on the phases during tem- 
perature changes, but if the amount of reinforcing 
phase and/or the temperature drop is large the matrix 
can no longer accommodate the large strains, whence 
yielding occurs. This behaviour has previously been 
found during thermal cycling with water or liquid 
nitrogen quenching of the same material [27]. Upon 
yielding, dislocations move in directions governed by 
the local stress fields they experience. Since the local 
stress fluctuations average to zero [8] they do not aid 
dislocation movement in any particular direction. It 
follows that n o  macroscopic flow occurs due to the 
local stress fields [11]. Rather, the flow that contributes 
to the stress reduction is directed by the average micro- 
stress. For  low fibre volume fractions the yield stress of 
the matrix is not surpassed, and no yielding occurs. 
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Figure 5 Stress difference (predicted minus measured stress) at (�9 
25, (Z~) 100, (El) 175 and ( + ) 250~ as a function of fibre volume 
fraction, yr. 
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4.3. Plastic behaviour 
The elastic-plastic behaviour of the matrix is con- 
sidered in the following. During temperature changes 
the behaviour of an MMC can be modelled as  the 
expansion or contraction of a rigid cavity in an elas- 
tic-plastic matrix, and the resulting equations can be 
solved analytically for simple geometries. Let us con- 
sider the composite as a system of fibres as spheri- 
cal shells with radius, a, in a surrounding matrix shell 
with radius, b, which can be plastically deformed. The 
radii, a and b, are defined by the mean fibre size and 
the volume fraction of fibres, vf, so that vf = a3/b 3. 
Following Hill [28] and Pickard and Derby [29], and 
considering that Young's modulus, as well as yield 
stress, vary with temperature, the critical temperature 
change, AT*, required to initiate full plastic flow can 
be calculated from 

AT* -- IT1 - T2I = (~o(To - T:)(1 - v) 
A ~ - f  ~ ~ ~ - 2 ~  f (5) 

where T1 is the initial and T 2 the final temperature 
and ~o and To are constants. For  this material, 
cr o = 65.8 MPa and To = 595 ~ [1]. 

Solving for T2o, i.e. the temperature at which full 
plastic yielding initiates on cooling from T1 = 350 ~ 
the yield temperatures T2o arrived at are given in 
Table II. For  the two larger fibre volume fractions this 
model predicts that the matrix behaves plastically 
during a large proportion of the cooling down to 
room temperature. The experimental data clearly sup- 
port this elastic-plastic behaviour for the highest fibre 
volume fraction since the difference between predicted 
and measured stress values is positive, cf. Figs 4 and 5. 
In the case of 20 v/o fibres the difference between 
measured values and the elastic (Eshelby) prediction is 
smaller and agreement with the model is more uncer- 
tain than for the 26 v/o material, cf. Fig. 5. It should be 
pointed out that the intervals of measured stress given 
in Table II include all components of stress tensor and 
also comprise occasional values deviating from typical 
ones. 

Equation 5 can also be used to predict the onset of 
plastic yielding during the temperature increase from 
25 ~ to measurement temperature. These values, T2~, 
are also shown in Table II. The observed decrease in 
residual stress at elevated temperatures is hence pre- 
dicted to be elastic and reversible up to Tzh in Table II. 
It is, however, important to note that Tz, specifies the 
temperature for initiation of full plastic yielding. Due 

to the lower dislocation density between fibres than 
adjacent to fibres, the matrix is weaker between fibres, 
implying that plastic deformation begins between 
fibres before the entire matrix yields plastically [7]. 
Hence, one can assume that local yielding has occur- 
red before the temperature, T2,, is reached. 

Comparing the values of T2~ with the levelling-out 
temperatures of the stress versus temperature curves 
in Fig. 4, it is seen that stress-decreasing mechanisms 
have indeed been active below T2h, but additional 
experiments are needed to determine the relative 
amount of reversible and irreversible stress relaxation 
and will be the aim of future work. 

In the case of vf = 10% the predicted temperature, 
T2,, in Table II is above the maximum measurement 
temperature, but as shown in Fig. 4a the stresses de- 
crease with increasing temperature at least up to 
250 ~ This relaxation is hence interpreted as largely 
elastic. 

Even though the absolute values of the stresses are 
somewhat different between the x - y  and x - z  direc- 
tions for the composite with vf = 20%, the tempera- 
tures at which plateaux are found in the stresses versus 
temperature curves of Fig. 4b are the same namely 
175~ Comparing with the predicted tempera- 
ture for onset of full plastic yielding T2~ = 171 ~ it is 
found that the elastic, and to some extent plastic, 
mechanisms active below T2, have been rather effec- 
tive, in as much as only minor stress changes are found 
above 175 ~ 

The results for the highest vf material shown in 
Fig. 4c seem to agree with the theoretical value 
T2, = 141 ~ in so far as the levelling-out of the stress 
versus temperature curves occurs at a lower tempera- 
ture for this fibre volume fraction than for the two 
lower vf composites. For  this high fibre volume frac- 
tion, further stress relief through plastic relaxation 
occurs above T2, where the elastic limit is reached. 

Interpreting the results from the elastic-plastic pre- 
dictions, one should bear in mind that the consider- 
ations presuppose that the rigid cavity be spherical, 
and that interaction between cavities (fibres) is not 
taken into account. The influence of fibre interaction 
on the relaxation behaviour increases of course as the 
interfibre spacing decreases, i.e. as the fibre volume 
fraction increases. Furthermore, being largely ellip- 
soidal or cylindrical, the fibres impose other con- 
straints on the matrix than do spherical inclusions 
such as particles, undoubtedly affecting the elastic- 
plastic behaviour of the matrix. 

T A B L E I I Predicted and measured matrix stresses, r after cooling from 350 to 25 ~ and calculated yield temperatures during cooling 
and heating for different fibre volume fractions 

. o d (oC) Fibre volume fraction ~m (MPa) Predicted ~ (MPa) Yield temperature, T2e(oC ) Yield temperature, T2h 

0.10 67 67 119 39 280 
0.20 129 125-176 231 171 
0.26 164 142-182 269 141 

"Eshelby model. 
b The intervals include all stress components in samples cut in (x-y) as well as (x-z) direction. 
c On cooling. 
a On heating. 
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5. Conclusions 
From the present work the following conclusions can 
be drawn: 

1. A device enabling residual stress measurements 
at elevated temperatures using X-ray diffraction has 
been constructed and used to measure thermal resid- 
ual stresses in Al-based composites at temperatures up 
to 250 ~ 

2. The lattice spacing in the matrix is strongly de- 
pendent on the volume fraction of fibres due to reac- 
tions between the fibre surface and the matrix alloy 
during production. An accurate determination of the 
diffraction angle, 20o, corresponding to the unstressed 
lattice spacing hence necessitates measurement on 
powders made from composites with all different fibre 
volume fractions. 

3. The residual stresses are all tensile in the matrix, 
and the deviation from a hydrostatic stress state is 
very small. The stresses show a strong dependence on 
temperature as well as fibre volume fraction. From 
values of typically 130 MPa at room temperature they 
decrease with increasing temperature, approaching 
zero at the maximum measurement temperature. 

4. The Eshelby model for equivalent inclusions is 
a powerful tool in predicting thermal stresses. How- 
ever, being an elastic model, the discrepancy between 
experiments and predictions becomes evident for high 
fibre volume fractions, where the proportion plastic 
behaviour of the matrix during temperature changes is 
significant. 

5. The stress reduction that occurs in the com- 
posites at elevated temperatures is a combination of 
elastic (reversible) and plastic (irreversible) relaxation 
that can be described using elastic theory and a model 
based on a rigid cavity in an elastic-plastic matrix. 
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